The mammalian TEF and the Drosophila scalloped genes belong to a conserved family of transcriptional factors that possesses a TEA/ATTS DNA-binding domain. Transcriptional activation by these proteins likely requires interactions with specific coactivators. In Drosophila, Scalloped (Sd) interacts with Vestigial (Vg) to form a complex, which binds DNA through the Sd TEA/ATTS domain. The Sd-Vg heterodimer is a key regulator of wing development, which directly controls several target genes and is able to induce wing outgrowth when ectopically expressed. Here we show that Vg contains two distinct transcriptional activation domains, suggesting that the function of Vg is to mediate transcriptional activation by Sd. By expressing a chimeric GAL4-Sd protein in Drosophila, we found that the transcriptional activity of the Vg-Sd heterodimer is negatively regulated at the AP and DV boundary of the wing disc. We also identify a novel human protein, TONDU, which contains a short domain homologous to the domain of Vg required for interaction with Sd. We show that TONDU specifically interacts with a domain conserved in all the mammalian TEF factors. Expression of TDU in Drosophila by means of the UAS-GAL4 system shows that this human protein can substitute for Vg in wing formation. We propose that TDU is a specific coactivator for the mammalian TEFs.