Human CD1 molecules, expressed on the surface of professional antigen-presenting cells (including dendritic cells, Langerhans' cells, B cells and activated monocytes) are structurally homologous to major histocompatibility complex (MHC) class I and class II molecules. CD1b and CD1c have been shown to present nonpeptide bacterial antigens to T cells. We hypothesized that CD1 molecules may also be involved in the presentation of bacterial protein antigens. Human peripheral blood mononuclear cells (PBMC) were exposed to two medically important proteins, tetanus toxoid (TT) and purified protein derivative (PPD), with and without murine monoclonal antibodies (MoAbs) specific for CD1a, CD1b and CD1c. All the MoAbs substantially inhibited the proliferative responses of PBMC to TT and PPD. Simultaneous interaction of CD1 and MHC class II molecules was even more inhibitory to these antigen-specific proliferative responses. In contrast, neither mixed lymphocyte reaction nor superantigen and mitogenic responses were affected by CD1-specific antibodies, indicating a certain restriction pattern in antigen presentation. Our findings suggest that, besides MHC class I and II molecules, there is a family of nonpolymorphic cell surface molecules that is able to present certain bacterial protein antigens to T cells.