The role of the metal-oxide interface in determining the spin polarization of electrons tunneling from or into ferromagnetic transition metals in magnetic tunnel junctions is reported. The spin polarization of cobalt in tunnel junctions with an alumina barrier is positive, but it is negative when the barrier is strontium titanate or cerium lanthanite. The results are ascribed to bonding effects at the transition metal-barrier interface. The influence of the electronic structure of metal-oxide interfaces on the spin polarization raises interesting fundamental problems and opens new ways to optimize the magnetoresistance of tunnel junctions.