A new method using acceleration data loggers enabled us to measure the porpoising behaviour of Adélie penguins (Pygoscelis adeliae), defined as a continuous rapid swimming with rhythmic serial leaps. Previous hydrodynamic models suggested that leaping would be energetically cheaper when an animal swims continuously at depths of less than three maximum body diameters below the water surface. In the present study, free-ranging Adélie penguins leapt at a mean speed of 2.8 m s(-)(1) above the predicted threshold speed (0.18-1. 88 m s(-)(1)). Wild penguins reduced drag by swimming deeper (0.91 m) and did not swim continuously within the high-drag layer while submerged. This indicates that previous calculations may be incomplete. Moreover, leaps represented an average of only 3.8 % of the total distance travelled during the porpoising cycle, which would make energy savings marginal. Among the six penguins used in our study, two did not porpoise and three porpoised for less than 7 min, also indicating that this behaviour was not important during travel to and from foraging sites, as has been previously suggested. Birds mainly porpoised at the start and end of a trip. One explanation of porpoising might be an escape behaviour from predators.