The pharmacokinetics, dosimetry, and immunogenicity of 131I- and (111)In-/90Y-humanized LL2 (hLL2) anti-CD22 monoclonal antibodies were determined in patients with recurrent non-Hodgkin's lymphoma. Fourteen patients received tracer doses of 131I-hLL2 followed 1 week later by therapeutic doses intended to deliver 50-100 cGy to the bone marrow. Another eight patients received (111)In-hLL2 followed by therapy with 90Y-hLL2 also delivering 50 or 100 cGy to the bone marrow. The blood T(1/2) (hours) for the tracer infusions of 131I-hLL2 was 44.2 +/- 10.9 (mean +/- SD) compared with 54.2 +/- 25.0 for the therapy infusions, whereas the values were 70.7 +/- 17.6 for (111)In-hLL2 and 65.8 +/- 15.0 for 90Y-hLL2. The estimated average radiation dose from 131I-hLL2 in tumors >3 cm was 2.4 +/- 1.9 cGy/mCi and was only 0.9-, 1.0-, 1.1-, and 1.0-fold that of the bone marrow, lung, liver, and kidney, respectively. In contrast, the estimated average radiation dose from 90Y-hLL2 in tumors >3 cm was 21.5 +/- 10.0 cGy/mCi and was 3.7-, 2.5-, 1.8-, and 2.5-fold that of the bone marrow, lung, liver, and kidney, respectively. No evidence of significant anti-hLL2 antibodies was seen in any of the patients. Myelosuppression was the only dose-limiting toxicity and was greater in patients who had prior high-dose chemotherapy. Objective tumor responses were seen in 2 of 13 and 2 of 7 patients given 131I-hLL2 or 90Y-hLL2, respectively. In conclusion, 90Y-hLL2 results in a more favorable tumor dosimetry compared with 131I-hLL2. This finding, combined with the initial anti-tumor effects observed, encourage further studies of this agent in therapeutic trials.