p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity

J Biol Chem. 1999 Nov 5;274(45):32333-41. doi: 10.1074/jbc.274.45.32333.

Abstract

Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are down-regulated in NIH 3T3 cells in response to transformation by activated oncogenes, such as H-Ras(G12V) and v-Abl. The mechanisms governing this down-regulation event remain unknown. Here, we show that caveolin-1 gene expression is directly regulated by activation of the Ras-p42/44 MAP kinase cascade. Down regulation of caveolin-1 protein expression by Ras is independent of (i) the type of activating mutation (G12V versus Q61L) and (ii) the form of activated Ras transfected (H-Ras versus K-Ras versus N-Ras). Treatment of Ras or Raf-transformed NIH 3T3 cells with a well characterized MEK inhibitor (PD 98059) restores caveolin-1 protein expression. In contrast, treatment of v-Src and v-Abl transformed NIH 3T3 cells with PD 98059 does not restore caveolin-1 expression. Thus, there must be at least two pathways for down-regulating caveolin-1 expression: one that is p42/44 MAP kinase-dependent and another that is p42/44 MAP kinase-independent. We focused our efforts on the p42/44 MAP kinase-dependent pathway. The activity of a panel of caveolin-1 promoter constructs was evaluated using transient expression in H-Ras(G12V) transformed NIH 3T3 cells. We show that caveolin-1 promoter activity is up-regulated approximately 5-fold by inhibition of the p42/44 MAP kinase cascade. Using electrophoretic mobility shift assays we provide evidence that the caveolin-1 promoter (from -156 to -561) is differentially bound by transcription factors in normal and H-Ras(G12V)-transformed cells. We also show that activation of protein kinase A (PKA) signaling is sufficient to down-regulate caveolin-1 protein expression and promoter activity. Thus, we have identified two signaling pathways (Ras-p42/44 MAP kinase and PKA) that transcriptionally down-regulate caveolin-1 gene expression.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Caveolin 1
  • Caveolins*
  • Cell Transformation, Viral
  • Cyclic AMP-Dependent Protein Kinases / metabolism*
  • Down-Regulation*
  • Enzyme Activation
  • Gene Expression Regulation*
  • Membrane Proteins / genetics*
  • Mice
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism*
  • Molecular Sequence Data
  • Promoter Regions, Genetic*
  • Signal Transduction*
  • Transcription Factors / metabolism

Substances

  • Cav1 protein, mouse
  • Caveolin 1
  • Caveolins
  • Membrane Proteins
  • Transcription Factors
  • Cyclic AMP-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases

Associated data

  • GENBANK/AF124227