Background: Several molecular changes, including loss of heterozygosity (i.e., deletion of one copy of allelic DNA sequences) and alterations in microsatellite DNA, have been detected early in the pathogenesis of lung cancer, even in histologically normal epithelium. In the bronchial epithelium of patients with lung cancer, we have determined the frequency, size, and patterns of molecularly abnormal clonal patches.
Methods: We studied formalin-fixed, paraffin-embedded samples from 16 surgically resected lung carcinomas (five squamous cell carcinomas, four small-cell carcinomas, six adenocarcinomas, and one large-cell carcinoma). From each carcinoma, we microdissected foci (each containing about 200 cells) of tumor tissue and equivalent samples of histologically normal and abnormal epithelium. Furthermore, multiple discontinuous foci of bronchial epithelium were analyzed from methanol-fixed samples from three additional patients with lung cancer (two with squamous cell carcinoma and one with adenocarcinoma). We used two-step polymerase chain reaction-based assays involving 12 microsatellite markers at seven chromosomal regions frequently deleted in lung cancer.
Results: Two hundred eighteen foci of nonmalignant bronchial epithelium (195 of histologically normal or slightly abnormal epithelium and 23 of dysplastic epithelium) were studied from the 19 surgically resected lobectomy specimens. Thirteen (68%) of the 19 specimens had at least one focus of bronchial epithelium with molecular changes. At least one molecular abnormality was detected in 32% of the 195 histologically normal or slightly abnormal foci and in 52% of the 23 dysplastic foci. Extrapolating from our two-dimensional analyses, we estimate that most clonal patches contain approximately 90 000 cells. Although, in a given individual, tumors appeared homogeneous with respect to molecular changes, the clonally altered patches of mildly abnormal epithelium were heterogeneous.
Conclusions: Our findings indicate that multiple small clonal or subclonal patches containing molecular abnormalities are present in normal or slightly abnormal bronchial epithelium of patients with lung cancer.