The type 1 receptor (PTH1R) for parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) is a G protein-coupled receptor that is highly expressed in bone and kidney and mediates in these tissues the PTH-dependent regulation of mineral ion homeostasis. The PTH1R also mediates the paracrine actions of PTHrP, which play a particularly vital role in the process of endochondral bone formation. These important functions, the likely involvement of the PTH1R in certain genetic diseases affecting skeletal development and calcium homeostasis, and the potential utility of PTH in treating osteoporosis have been the driving force behind intense investigations of both the receptor and its peptide ligands. Recent lines of work have led to the identification of constitutively active PTH1Rs in patients with Jansen's metaphyseal chondrodysplasia, the demonstration of inverse agonism by certain ligand analogs, and the discovery of the PTH-2 receptor subtype that responds to PTH but not PTHrP. As reviewed herein, a detailed exploration of the receptor-ligand interaction process is currently being pursued through the use of site-directed mutagenesis and photoaffinity cross-linking methods; ultimately, such work could enable the development of novel PTH receptor ligands that have therapeutic value in treating diseases such as osteoporosis and certain forms of hypercalcemia.