It is now established that two species of Bartonella, namely, Bartonella henselae and B. quintana, cause bacillary angiomatosis in human immunodeficiency virus-infected patients. In addition, B. henselae causes cat scratch disease and B. quintana, B. henselae, and B. elizabethae can cause bacteremia and endocarditis in immunocompetent persons. We have developed a PCR-restriction fragment length polymorphism-based assay for direct detection and identification to species level of Bartonella in clinical specimens. This is accomplished by PCR amplification of Bartonella DNA using primers derived from conserved regions of the gene carrying the 16S ribosomal DNA, followed by restriction analysis using DdeI and MseI restriction endonucleases. We amplified a Bartonella genus-specific 296-bp fragment from 25 clinical samples obtained from 25 different individuals. Restriction analysis of amplicons showed that identical patterns were seen from digestion of B. henselae and B. quintana amplicons with DdeI, whereas a different unique pattern was seen by using the same enzyme with B. vinsonii and B. elizabethae. With MseI digestion, B. henselae and B. vinsonii gave nearly identical patterns while B. quintana and B. elizabethae gave a different pattern. By combining the restriction analysis data generated with MseI and DdeI, unique "signature" restriction patterns characteristic for each species were obtained. These patterns were useful in identifying the Bartonella species associated with each tissue specimen.