Rat whole-brain spheroids were used to assess the intrinsic neurotoxicity of methylenedioxy-methamphetamine (MDMA, Ecstasy) and two of its metabolites, dihydroxymethamphetamine (DHMA) and 6-hydroxy-MDMA (6-OH MDMA). Exposure of brain spheroids to MDMA or the metabolite 6-OH MDMA (up to 500 micromol/L) for 5 days in culture did not alter intracellular levels of glutathione (GSH), glial fibrillary acidic protein (GFAP) or serotonin (5-HT). In contrast, exposure to the metabolite DHMA, which can deplete intracellular thiols, significantly increased GSH levels (up to 170% of control) following exposure to 50 and 100 micromol/L DHMA. There was also a significant reduction in the levels of glial fibrillary acidic protein (GFAP) and GSH by DHMA at the highest concentration tested (500 micromol/L) but there was no effect on 5HT. This may constitute a sublethal neurotoxic compensatory response to DHMA in an attempt to replenish depleted intraneural GSH levels following metabolite exposure. Rat whole-brain spheroids may thus be a useful in vitro model to delineate mechanisms and effects of this class of neurotoxin.