Contact sensitivity (CS) is a cutaneous T(h)1 response that is induced by skin painting with reactive hapten. In prior in vivo studies of CS, we showed that recombinant soluble alphabetaTCR (sTCR) acted non-specifically to protect CS-effector T cells from suppression, but no molecular mechanism was determined. In the current study, we employed an in vitro system to investigate the mechanism of how sTCR protect CS-effector T cells from suppression. Immune CS-effector cells and appropriate hapten-conjugated antigen-presenting cells (APC) were incubated together with down-regulatory culture supernatant produced by suppressive spleen cells from mice tolerized i.v. with specific hapten, which produced strong inhibition of IFN-gamma production by the CS-effector cells. Importantly, addition of two different sTCR, of unrelated specificity, reversed this down-regulation and thus restored IFN-gamma production. We found that the APC, and not the CS-effector T cells, were the locus of the sTCR-mediated protection and showed direct binding of sTCR to APC by flow cytometry. Further, addition of anti-IL-12 showed that sTCR protection was due to IL-12 induced by sTCR and released by the APC, and was confirmed by ELISA measurement of IL-12 induced in APC supernatants by sTCR incubation. These results indicated a possible new regulatory loop in which suppression was reversed by IL-12 derived from APC, following direct surface binding of sTCR, and enhanced by IFN-gamma production from the T(h)1 CS-effector cells.