Radioresponsiveness at low doses: hyper-radiosensitivity and increased radioresistance in mammalian cells

Mutat Res. 1999 Dec 6;430(2):241-53. doi: 10.1016/s0027-5107(99)00136-0.

Abstract

The rationale for and importance of research on effects after radiation at "low doses" are outlined. Such basic radiobiological studies on induction of repair enzymes, protective mechanisms, priming, and hypersensitivity are certainly all relevant to treatment of cancer (see Section 1, Studies at low doses - relevance to cancer treatment). Included are examples from many groups, using various endpoints to address the possibility of an induced resistance, which has been compared to the adaptive response [M.C. Joiner, P. Lambin, E.P. Malaise, T. Robson, J.E. Arrand, K.A. Skov, B. Marples, Hypersensitivity to very low single radiation doses: its relationship to the adaptive response and induced radioresistance, Mutat. Res. 358 (1996) 171-183.]. This is not intended to be an exhaustive review--rather a re-introduction of concepts such as priming and a short survey of molecular approaches to understanding induced resistance. New data on the response of HT29 cells after treatment (priming) with co-cultured activated neutrophils are included, with protection against X-rays (S1). Analysis of previously published results in various cells lines in terms of increased radioresistance (IRR)/intrinsic sensitivity are presented which complement a study on human tumour lines [P. Lambin, E.P. Malaise, M.C. Joiner, Might intrinsic radioresistance of human tumour cells be induced by radiation?, Int. Radiat. Biol. 69 (1996) 279-290].It is not feasible to extrapolate to low doses from studies at high doses. The biological responses probably vary with dose, LET, and have variable time frames. The above approaches may lead to new types of treatment, or additional means to assess radioresponsiveness of tumours. Studies in many areas of biology would benefit from considerations of different dose regions, as the biological responses vary with dose. There may also be some implications in the fields of radiation protection and carcinogenesis, and the extensions of concepts of hyper-radiosensitivity (HRS)/IRR extended to radiation exposure are considered in Section 2, Possible relevance of IRR concepts to radiation exposure (space). More knowledge on inducible responses could open new approaches for protection and means to assess genetic predisposition. Many endpoints are used currently--clonogenic survival, mutagenesis, chromosome aberrations and more direct--proteins/genes/functions/repair/signals, as well as different biological systems. Because of scant knowledge of the relevant aspects at low doses, such as inducible/protective mechanisms, threshold, priming, dose-rate effects, LET within one system, it is still too early to draw conclusions in the area of radiation exposure. Technological advances may permit much needed studies at low doses in the areas of both treatment and protection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Colony-Forming Units Assay
  • Cricetinae
  • DNA Damage
  • Dose-Response Relationship, Radiation*
  • Eukaryotic Cells / radiation effects*
  • Forecasting
  • Humans
  • Linear Energy Transfer
  • Mammals
  • Mice
  • Neoplasms / radiotherapy
  • Neoplastic Stem Cells / radiation effects
  • Radiation Tolerance*