Regioselective functionalization of 2,4,5,6-tetrachloro-1, 3-dicyanobenzene (TCDCB) by nucleophilic substitution of the chlorine at C(4) with L-Ala, L-Phe or L-Pro, followed by amide-bond formation to lipophilic amines containing strong pi-donor group, and by final introduction of the spacer 3-aminopropyltriethoxysilyl (APTES), provided a number of new brush-type chiral selectors in the form of 1-2:1 mixture of 2,4 and 4,6-di(alkyl)amino regioisomers (8/9, 10/11, 12/13, 14/15, 20/21, 23/24). Linking these to silica gel (Nucleosil 100-5) gave new chiral stationary phases for HPLC columns (CSP I-CSP VI). Being strong pi-basic selectors, most of these columns exhibited good resolution properties for pi-acid test racemates (TR 1-TR 9), specifically rac 3, 5-dinitrobenzoyl-alpha-amino acid isopropyl-esters (DNB-AA). CSP V [1,3-dicyano-2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-¿[N-butyl]-N'-[(1R)-cyclohexylethyl]-N'-[napht hylmet hyl]acetamido¿-aminobenzene] and particularly the dipeptide-containing CSP VI [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(3', 5'-dimethylanilido)-L-alanyl-L-prolyl-aminobenzene] proved to have the highest efficiency, comparable with the best commercial brush-type columns with pi-donor properties. Further evidence revealed that multiple hydrogen bonding via the amide group in the chiral environment and pi-pi interaction play a major role in chiral recognition, whereas steric perturbations via nonbonding VDW interactions contribute substantially only to the resolution of CSP III [2,5(5,6)-dichloro-6(2)-(gamma'-silica bound propylamino)-4-N-(cyclohexylamido)-L-alanyl-aminobenzene]. This contribution is minor for the other CSPs.
Copyright 2000 Wiley-Liss, Inc.