The nature and extent of callosal morphological alterations in schizophrenia remain unresolved. A parametric surface modeling approach using magnetic resonance (MR) images was employed. This provided spatially accurate representations of midsagittal callosal surfaces in schizophrenic patients (n = 25; 15 males) and normal controls (n = 28; 15 males). Areas of functionally relevant callosal channels and measures reflecting callosal shape were visualized and compared across groups. To register neuroanatomical landmarks surrounding the corpus callosum, each three-dimensional MR volume was scaled according to Talairach AC-PC distance, and raw distances included as covariates in multivariate analyses. Results revealed: (i) a marked vertical displacement of the corpus callosum in patients (P < 0.01); (ii) increases in curvature of superior and inferior callosal surfaces (P < 0.001); and (iii) significant increases in maximum widths in anterior and posterior regions in male patients compared to male controls; as well as (iv) increased patterns of callosal variability in female patients but no effects of diagnosis between female groups. These findings demonstrate a clear index of structural neuropathology in male schizophrenic patients. Displacement and curvature increases were highly correlated with structural differences in surrounding neuroanatomical regions, including increased volume of the lateral ventricles (P < 0.01).