Collagen XVII is a hemidesmosomal transmembrane molecule important for epithelial adhesion in the skin. It exists in two forms, as a full-length protein and as a soluble ectodomain that is shed from the keratinocyte surface by furin-mediated proteolysis. To obtain information on the conformation and the functions of this unusual collagen, its largest collagenous domain, Col15, was expressed in a eukaryotic episomal expression system and purified by DEAE and fast protein liquid- Mono S chromatography. The protein was triple-helical (T(m) of 26.5 degrees C) when produced in cultures containing ascorbic acid. When the vitamin supply was limited, the 4-hydroxyproline content was reduced from 74 to 9%, which, in turn, resulted in a drastic reduction of the stability of the triple helix. The glycine substitution mutation G627V associated with junctional epidermolysis bullosa, a human blistering skin disease, also had a striking effect on thermal stability of rCol15 causing partial unfolding already at 4 degrees C. Col15 promoted cell adhesion of epithelial and fibroblastic cell lines with a beta1 integrin-mediated mechanism. In concert with this, in acquired autoimmune blistering skin diseases, circulating IgG and IgA autoantibodies were found to target rCol15r.