The 79-amino acid, mature SP-B peptide contains three intramolecular disulfide bonds shared by all saposin-like proteins. This study tested the hypothesis that the disulfide bond formed between cysteine residues 35 and 46 (residues 235 and 246 of the SP-B proprotein) is essential for proper function of SP-B. To test the role of this bridge in SP-B function in vivo, a construct was generated in which cysteine residues 235 and 246 of the human SP-B proprotein were mutated to serine and cloned under the control of the 3.7-kilobase hSP-C promoter (hSP-B(C235S/C246S)). In two transgenic mouse lines, expression of the mutant peptide in the wild-type murine SP-B background was invariably lethal in the neonatal period. In four additional lines, survival was inversely related to the level of transgene expression. To test the ability of the mutant peptide to functionally replace the wild-type protein, transgenic mice were crossed into the SP-B null background. No animals that expressed hSP-B(C235S/C246S) in the murine SP-B-/- background survived the neonatal period. hSP-B(C235S/C246S) proprotein accumulated in the endoplasmic reticulum and was not processed to the mature, biologically active peptide. The results of these studies demonstrate that the intramolecular bridge between residues 235 and 246 is critical for intracellular trafficking of SP-B and suggest that overexpression of mutant SP-B in the wild-type background may be lethal.