This paper presents a steady-state method of arterial spin labelling using continuous saturation in conjunction with echo-planar imaging (EPI), which has been implemented at 3 T. The continuous saturation technique has the advantage of having high sensitivity compared to transient labelling techniques, when long repetition times are used. It is also easy to implement and requires minimal data to be acquired for quantitation. Like other arterial spin labelling techniques, continuous saturation is potentially prone to overestimation of perfusion rates due to the effect of tagged blood in vessels within the image slice. Using a simple model of the vasculature, the degree of diffusion weighting required to suppress the arterial signal has been determined, with the results indicating that a value of 2 s/mm2 is adequate. Histogram analysis of the experimental data has been used to evaluate the effect of diffusion weighting. Using a b-value of 2 s/mm2, the mean perfusion-related signal change in grey matter on continuous saturation was found to be 1.5 +/- 0.2%, yielding a mean perfusion rate of 87 +/- 9 ml/100 g/min. Brain activation studies using the diffusion weighted continuous saturation technique gave a mean increase in perfusion of 36 +/- 12% in activated motor cortex.