This study examines the extent to which the major dimensions of the cranial base (maximum length, maximum breadth, and flexion) interact with brain volume to influence major proportions of the neurocranium and face. A model is presented for developmental interactions that occur during ontogeny between the brain and the cranial base and neurocranium, and between the neurobasicranial complex (NBC) and the face. The model is tested using exocranial and radiographic measurements of adult crania sampled from five geographically and craniometrically diverse populations. The results indicate that while variations in the breadth, length and flexion of the cranial base are mutually independent, only the maximum breadth of the cranial base (POB) has significant effects on overall cranial proportions, largely through its interactions with brain volume which influence NBC breadth. These interactions also have a slight influence on facial shape because NBC width constrains facial width, and because narrow-faced individuals tend to have antero-posteriorly longer faces relative to facial breadth than wide-faced individuals. Finally, the model highlights how integration between the cranial base and the brain may help to account for the developmental basis of some morphological variations such as occipital bunning. Among modern humans, the degree of posterior projection of the occipital bone appears to be a consequence of having a large brain on a relatively narrow cranial base. Occipital buns in Neanderthals, who have wide cranial bases relative to endocranial volume, may not be entirely homologous with the morphology occasionally evident in Homo sapiens.
Copyright 2000 Academic Press.