The role of neuropeptides in initiating and modulating airway inflammation was examined in a human bronchial epithelial cell line (i.e. BEAS-2B). At a range of concentrations, exposure of BEAS-2B cells to Substance P (SP) or calcitonin gene related protein resulted in immediate increases in intracellular calcium ([Ca(2+)](i)), the synthesis of the transcripts for the inflammatory cytokines, IL-6, IL-8 and TNFalpha after 2 h exposure, and the release of their proteins after 6 h exposure. Addition of thiorphan (100 nM), an inhibitor of neutral endopeptidase, enhanced the levels of SP-stimulated cytokine release. Stimulation of IL-6 by SP occurred in a conventional receptor-mediated manner as demonstrated by its differential release by fragments SP 4-11 and SP 1-4 and by the blockage of IL-6 release with the non-peptide, NK-1 receptor antagonist, CP-99 994. In addition to the direct stimulation of inflammatory cytokines, SP (0.5 microM), in combination with TNFalpha (25 units/ml), synergistically stimulated IL-6 release. BEAS-2B cells also responded to the botanical irritant, capsaicin (10 microM) with increases in [Ca(2+)](i) and IL-8 cytokine release after 4 h exposure. The IL-8 release was dependent on the presence of extracellular calcium. Capsaicin-stimulated increases of [Ca(2+)](i) and cytokine release could be reduced to control levels by pre-exposure to capsazepine, an antagonist of capsaicin (i.e. vanilloid) receptor(s) or by deletion of extracellular calcium from the exposure media. The present data indicate that the BEAS-2B human epithelial cell line expresses neuropeptide and capsaicin-sensitive pathways, whose activation results in immediate increases of [Ca(2+)](i) stimulation of inflammatory cytokine transcripts and the release of their cytokine proteins.
Copyright 1999 Harcourt Publishers Ltd.