After systemic infection of mice with 104 PFU of lymphocytic choriomeningitis virus (LCMV), infected cells are detected simultaneously in various organs, including spleen and intestinal mucosa. Most notably, virus-infected cells are also present among CD11c+ dendritic cells in the subepithelial area of the small intestinal mucosa. Some of these virus-infected cells are in close spatial association with intestinal intraepithelial lymphocytes (IEL). Therefore, we compared virus-specific cytotoxic activity of CD8 splenocytes with that of IEL subsets. While ex vivo isolated TCRalphabeta+CD8alphaalpha+ IEL exert only minimal virus-specific cytotoxicity, maximum specific killing mediated by TCRalphabeta+CD8alphabeta+ IEL on day 8 postinfection exceeds maximum cytotoxic activity observed with CD8 splenocytes when assessed in vitro. Maximum cytotoxic activity of IEL is preceded by peak perforin and granzyme B mRNA expression in IEL around day 6 postinfection, suggesting a recent activation in situ. The antivirus cytotoxicity of in vivo primed IEL is further demonstrated by the protection from virus production in the spleen of mice infected with LCMV 10 h before adoptive cell transfer. These data indicate a potent priming of LCMV-specific IEL in situ after systemic LCMV infection and suggest that cytotoxic IEL markedly contribute to the elimination of virus-infected cells in the intestinal mucosa.