The nef gene is required for optimal viral spread of human and simian immunodeficiency viruses. However, the molecular mechanisms underlying the action of the Nef proteins may not be identical for all viral families. Here we investigate the interaction between the Nef protein of human and simian immunodeficiency viruses and SH3 domains from Src family kinases. Using the yeast two-hybrid system and immunoblotting we show that, in contrast to HIV-1 Nef, SIV and HIV-2 Nef poorly interact with Hck SH3 but bind to Src and Fyn SH3 domains. The molecular basis of these differences in SH3 targeting was revealed by sequence analysis and homology modeling of the putative SH3-Nef structures. Three amino acids (Trp-113, Thr-117, and Gln-118) that localize in a "hydrophobic pocket" implicated in SH3 binding of HIV-1 Nef, are systematically substituted in SIV/HIV-2 alleles (by Tyr, Glu, and Glu, respectively). We demonstrate that site-directed mutagenesis of these residues in SIV(mac239) Nef suffices to restore Hck SH3 binding and co-immunoprecipitation with full-length Hck from transfected cells. Our findings identify fundamental mechanistic differences in targeting of Src family kinases by HIV and SIV Nef. The herein described mechanism of SH3 selection by Nef via a "pocket" proximal to the canonical proline-rich motif may be a common feature for SH3 recognition by their natural ligands.