The ability of interleukin-10 (IL-10) to inhibit macrophage recruitment, activation, and proliferation in vivo was studied in a macrophage-mediated, but T cell-independent, passive anti-glomerular basement membrane antibody-induced model of glomerulonephritis (GN) in rats. Treatment with recombinant murine IL-10 resulted in dose-dependent reductions in proteinuria (high dose: 16 +/- 1 mg/24 h; low dose: 30 +/- 2 mg/24 h; control treatment: 69 +/- 6 mg/24 h; normal: 7 +/- 1 mg/24 h) and glomerular macrophage recruitment (high dose: 1.8 +/- 0.1 macrophages per glomerular cross section [c/gcs]; low dose: 5.5 +/- 0.2 c/gcs; control treatment: 12.1 +/- 0.6 c/gcs). Macrophage and intrinsic glomerular cell proliferation were reduced at both doses of IL-10, as was glomerular expression of P-selectin and monocyte chemoattractant protein-1. IL-10 treatment also resulted in a dose-dependent reduction of macrophage activation as indicated by MHC class II and IL-1beta expression. Glomerular nitrite production by isolated cultured glomeruli was reduced after IL-10 treatment in vivo (high dose: 2.3 +/- 2.3 nmol/10(4) glomeruli per 72 h; low dose: 28 +/- 5 nmol/10(4) glomeruli per 72 h; control treatment: 82 +/- 11 nmol/10(4) glomeruli per 72 h). Tumor necrosis factor-alpha production was abolished by high-dose treatment and reduced by the lower dose (3.8 +/- 3.8 pg/10(4) glomeruli per 72 h; control treatment: 249 +/- 23 pg/10(4) glomeruli per 72 h). These studies demonstrate that IL-10 directly attenuates glomerular macrophage recruitment, activation, and proliferation in vivo and can significantly attenuate macrophage-mediated GN independent of any effects on T cells.