While characterizing the type-1 protein phosphatases sds21 and dis2 in fission yeast (Schizosaccharomyces pombe) a novel high molecular mass protein was identified with serine/threonine phosphatase activity (referred to as PP-R) that was resistant to a panel of characteristic inhibitors of protein phosphatases. Purification of the native sds21 catalytic isoform of protein phosphatase-1 (PP-1) from an S. pombe knockout strain lacking dis2 (deltadis2) resulted predominantly in identification of PP-R. To test the hypothesis that the catalytic activity of PP-R comprised sds21, a parallel purification was performed of PP-1 activity from an S. pombe knockout strain lacking sds21 (deltasds21). Both deltasds21 and deltadis2 strains exhibited similar protein phosphatase activity profiles as determined by DEAE-sepharose, Mono-Q and Superdex gel filtration chromatography. However, the peak of protein phosphatase activity from deltasds21 S. pombe that co-migrated with PP-R from deltadis2 S. pombe exhibited the sensitivity to a panel of inhibitors that was characteristic of a type-1 protein phosphatase. These data suggest that the catalytic subunit of PP-R comprises sds21 and that the resistance to inhibitors may originate from structural differences between dis2 and sds21 isoforms. A key structural feature present in sds21, but lacking in dis2, is a classical phosphorylation consensus sequence surrounding serine-145 of sds21. The previous hypothesis was that PP-1 activity among several lower eukaryotes may be regulated directly by cAMP-dependent protein kinase (PKA) phosphorylation. However, this study demonstrated that recombinant sds21 is not a target for PKA in vitro. The constrained configuration of the putative PKA site on the PP-1 holoenzyme may restrict its ability to be targeted by PKA.