Internalization and downregulation are important steps in the modulation of receptor function. Recent work with the beta2 adrenergic and opioid receptors have implicated these processes in receptor-mediated activation of mitogen-activated protein kinase (MAPK). We have used CHO cells expressing epitope-tagged rat kappa opioid receptors (rKORs) and prodynorphin-derived peptides to characterize the agonist-mediated endocytosis of rKORs and activation of MAPK. Kappa receptor-selective peptides induced receptor internalization and downregulation whereas nonpeptide agonists did not. An examination of the ability of dynorphin A-17-related peptides (lacking C-terminal amino acids) to promote KOR internalization, inhibition of adenylyl cyclase, and MAPK phosphorylation revealed that the N-terminal seven residues play an important role in eliciting these responses. Both dynorphin peptides and nonpeptide agonists induced rapid and robust phosphorylation of MAPKs. Taken together, these results point to a difference in the ability of dynorphin peptides and nonpeptide ligands to promote rKOR endocytosis and support the view that rKOR internalization is not required for MAPK activation.