Retroviral insertional mutagenesis was used to select mutant NRP-154 rat prostate carcinoma cells resistant to transforming growth factor (TGF)-beta-induced cell death. Similar to the parental cells, a mutant clone, M-NRP1, expressed TGF-beta receptors and was still responsive to induction both of direct target genes by TGF-beta and of apoptosis by staurosporine or okadaic acid. In contrast, indicators of cell growth, strongly suppressed by TGF-beta in the parental cells, were unaffected in M-NRP1 cells. M-NRP1 cells overexpress the antiapoptotic protein, Bcl-xL, and show dysregulated expression and localization of a protein related to a novel human septin, ARTS (designation of apoptotic response to TGF-beta signals), cloned by homology to an exonic sequence flanked by the viral long terminal repeats in M-NRP1 cells and shown to make cells competent to undergo apoptosis in response to TGF-beta. We propose that ARTS might operate within the same apoptotic pathway as Bcl-xL and that M-NRP1 cells could serve as a useful model for characterization of this pathway.