Previous studies have demonstrated that short-term treatment with peroxisome proliferators decreased the size and number of gamma-glutamyl transpeptidase or placental glutathione S-transferase (GSTP)-positive hepatic hyperplastic lesions. In this study, we have examined the effect of the hormone triiodothyronine (T3), which, similarly to peroxisome proliferators, is a strong liver mitogen and a ligand of nuclear receptors, on the growth of GSTP-positive nodules generated by the resistant hepatocyte model and on the development of hepatocellular carcinoma. Hepatic hyperplastic nodules were induced in male Fischer rats by a single dose (150 mg/kg) of diethylnitrosamine, followed by a 2-week exposure of the animals to 2-acetylaminofluorene and partial hepatectomy. Nine weeks after diethylnitrosamine administration, rats were switched to a diet containing 4 mg/kg T3 for 1 week (experiment 1) and sacrificed during T3 feeding or were exposed to seven cycles of T3-supplemented diet (1 week/month per 7 months), and sacrificed 6 months after the last cycle (experiment 2). Results showed that T3 treatment for 1 week caused a 70% reduction in the number of GSTP-positive nodules (14/cm2 in T3-fed rats versus 44/cm2 of control animals), as well as GSTP-positive area (12% versus 43% of controls). Reduction in the number of GSTP-positive nodules observed 1 week after T3 feeding was associated with a strong increase in the labeling index of enzyme-altered nodules compared with that of controls (labeling index was 64 and 31%, respectively). No significant differences in the apoptotic index were observed between the two groups. Results from experiment 2 did reveal that although rats treated with diethylnitrosamine + 2-acetylaminofluorene developed 100% hepatocellular carcinoma and 33% of them showed lung metastasis, only 50% of rats exposed to repeated cycles of triiodothyronine developed hepatocellular carcinoma with no lung metastasis. This study indicates that cell proliferation per se might not necessarily represent a promoting condition for putative preneoplastic lesions and demonstrates an anticarcinogenic effect of T3.