A 20-year-old female hypogammaglobulinemic patient received monotypic Sabin 3 vaccine in 1962. The patient excreted type 3 poliovirus for a period of 637 days without developing any symptoms of poliomyelitis, after which excretion appeared to have ceased spontaneously. The evolution of Sabin 3 throughout the entire period of virus excretion was studied by characterization of seven sequential isolates from the patient. The isolates were analyzed in terms of their antigenic properties, virulence, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 3 vaccine. The isolates followed a main lineage of evolution with a rate of nucleotide substitution that was very similar to that estimated for wild-type poliovirus during person-to-person transmission. There was a delay in the appearance of antigenic variants compared to sequential type 3 isolates from healthy vaccines, which could be one of the possible explanations for the long-term excretion of virus from the patient. The distribution of mutations in the isolates identified regions of the virus possibly involved in adaptation for growth in the human gut and virus persistence. None of the isolates showed a full reversion of the attenuated and temperature-sensitive phenotypes of Sabin 3. Information of this sort will help in the assessment of the risk of spread of virulent polioviruses from long-term excretors and in the design of therapies to stop long-term excretion. This will make an important contribution to the decision-making process on when to stop vaccination once wild poliovirus has been eradicated.