There is controversy on the role of endothelin (ET)-1 in the mechanism of hypoxic pulmonary vasoconstriction (HPV). Although HPV is inhibited by ET-1 subtype A (ET(A))-receptor antagonists in animals, it has been reported that ET(A)-receptor blockade does not affect HPV in isolated lungs. Thus we reassessed the role of ET-1 in HPV in both rats and isolated blood- and physiological salt solution (PSS)-perfused rat lungs. In rats, the ET(A)-receptor antagonist BQ-123 and the nonselective ET(A)- and ET(B)-receptor antagonist PD-145065, but not the ET(B)-receptor antagonist BQ-788, inhibited HPV. Similarly, BQ-123, but not BQ-788, attenuated HPV in blood-perfused lungs. In PSS-perfused lungs, either BQ-123, BQ-788, or the combination of both attenuated HPV equally. Inhibition of HPV by combined BQ-123 and BQ-788 in PSS-perfused lungs was prevented by costimulation with angiotensin II. The ATP-sensitive K(+) (K(ATP))-channel blocker glibenclamide also prevented inhibition of HPV by BQ-123 in both lungs and rats. These results suggest that ET-1 contributes to HPV in both isolated lungs and intact animals through ET(A) receptor-mediated suppression of K(ATP)-channel activity.