An accumulation of proteoglycans in scarred fascia

Mol Cell Biochem. 2000 Jan;203(1-2):103-12. doi: 10.1023/a:1007012321333.

Abstract

A little is known about proteoglycan (PG) changes, occuring in the course of scarring of tissues another than skin. The aim of present study was biochemical characterization of glycosaminoglycans (GAGs) and proteoglycans (PGs) of normal and scarred fascia. Samples of normal fascia lata were taken at autopsy from 23 individuals and samples of scarred fascia lata were removed from 23 patients at reoperations for femoral fracture. The obtained tissues were divided into two samples: first of them was submitted to GAG isolation and the second one to PG isolation. GAGs were extracted by extensive papain digestion followed by the fractionation using cetylpyridinium chloride. In order to qualitative and quantitative characterization GAGs were submitted to electrophoresis on cellulose acetate before and after treatment with enzymes, specifically depolymerizing some kinds of GAGs. PGs were extracted using 4 M guanidine HCl followed by purification by forming complexes with Alcian blue. PGs were submitted to gel permeation chromatography on Sepharose 4B. In order to obtain core proteins PGs were depolymerized with chondroitinase ABC. The purified PGs and their core proteins were separated with sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS/PAGE). It was found that total GAGs content was significantly elevated in scarred fascia. Both types of fascia contained chondroitin-, dermatan- and heparan sulphates and hyaluronic acid. Dermatan sulphates (DS) were the predominant GAGs of normal and scarred fascia. The contents of all GAG types were increased in scarred fascia. Both types of fascia contained two kinds of dermatan sulphate proteoglycans (DSPGs); first being similar to biglycan and the second one similar to decorin, as it was judged by molecular weight of their native molecules and core proteins as well as type of GAG components. Densitometric analysis showed that decorin is a predominant DSPG in both fascia types, but in scarred tissue the ratio of biglycan to decorin is considerably higher. Moreover, in scarred fascia a large chondroitin sulphate proteoglycan (CSPG) was also observed. The obtained results have shown that the scar formation is accompanied by quantitative and qualitative alterations in GAGs/PGs resembling those observed in hypertrophic skin scars. The biochemical modification of the scarred fascia lata may partly explain the clinically manifested damage to biomechanical properties of this tissue.

MeSH terms

  • Adult
  • Aged
  • Cicatrix / metabolism*
  • Extracellular Matrix / metabolism
  • Fascia / metabolism*
  • Fascia / pathology
  • Humans
  • Hyaluronic Acid / metabolism
  • Middle Aged
  • Proteoglycans / metabolism*

Substances

  • Proteoglycans
  • Hyaluronic Acid