Rats were trained to recognize a discriminative stimulus (DS) elicited by the preferential dopamine D3 receptor agonists, PD128,907 (0.16 mg/kg, i.p.) and 7-OH-DPAT (0.16 mg/kg, i.p.). PD128,907 and 7-OH-DPAT showed "full" (> or = 80%) and mutual generalization. Chemically-diverse, preferential D3 versus D2 agonists, quinelorane, CGS15855A, pramipexole, ropinirole and piribedil, generalized to PD128,907 (and 7-OH-DPAT) in this order of potency, which correlated more strongly with affinity/activity at cloned human (h)D3 (r=0.68/0.81, n=7) than hD2 (0.27/0.64, n=7) receptors. Further, generalization potency strongly correlated with potency for suppression of response rates (0.86), induction of hypothermia (0.92), reduction of striatal dopamine turnover (0.92) and diminution of immobility in a forced-swim procedure (0.97). Nafadotride, UH232 and AJ76, which show a mild preference for D3 versus D2 sites, blocked the PD128,907 DS, and the modestly-selective D3 antagonist, U99194A, was partially effective. Both nafadotride and U99194A blocked the 7-OH-DPAT DS. However, antagonist potency (n=4) versus PD128,907 correlated better with affinity at D2 (0.89) versus D3 (0.27) sites. Further, whereas the preferential D2 versus D3 antagonist, L741,626, antagonized the PD128,907 DS, the selective D3 antagonists, S11566, S14297 (its eutomer) and GR218,231 were ineffective against PD128907 and 7-OH-DPAT DS. S11566 and GR218,231 likewise did not generalize to PD128,907. In conclusion, under the present conditions, D2 receptors are principally implicated in the DS properties of PD128,907 and 7-OH-DPAT.