Spatial and temporal abundance patterns of anopheline larvae and their relationships with wetland conditions were studied in an endemic malaria area in northeastern Venezuela, where Anopheles aquasalis Curry is the main vector. Larvae were sampled over a 2-yr period in 7 wetland types (brackish and freshwater herbaceous swamps, mangrove swamps, freshwater ponds, clear-cut marsh forests, small irrigation canals, and swamp forests), covering 3 environmental gradients (salinity, aquatic vegetation, and habitat permanence). Twelve variable were quantified to describe each habitat. Two species of anophelines were collected. An. aquasalis was the species with the widest distribution, and its highest abundance was in the seasonal brackish mangrove habitat during the rainy season. An. oswaldoi Peryassu was rarely encountered, but was mainly associated with the dry season and with the permanent fresh water wetlands (such as ponds). Principal components and correlation analyses revealed that the physicochemical (salinity, dissolved oxygen) variables of the wetland were associated most strongly with the spatial distribution of both species. Variations in salinity were strongly associated with the abundance of An. aquasalis. Both the occurrence and abundance of An. oswaldoi were most closely correlated with dissolved oxygen. Changes in seasonal abundance of both species were associated with rainfall. The relevance of these results to vector control in northern Venezuela is discussed.