The unsolved problem of cryopreservation of the yolk-rich teleost embryos may be related, in part, to their sensitivity to chilling and cryoprotective agents. The aim of this study was to gain data on the sensitivity of carp embryos to low temperatures at different developmental stages and on the possible protective and toxic effects of cryoprotectants. A total of 86,400 morulae, half-epiboly and heartbeat-stage embryos was selected and then placed in water or in 1 M methanol, dimethyl sulfoxide (Me2SO), glycerol or 0.1 M sucrose solution at 0, 4 or 24 degrees C for 5 min or 1 h. Following these treatments, the embryos were held in a 24 degrees C water bath until the evaluation of hatching rates. In every developmental stage a significant decrease of hatching rates following exposure to 4 or 0 degree C was detected. Sensitivity to chilling changed significantly with development (heartbeat < morula < half-epiboly). Half-epiboly stage embryos were less sensitive to a short period of exposure to cryoprotectants than morula and heartbeat stages. A 1-h exposure to cryoprotectants revealed a stage dependent sensitivity. Toxicity increased in the order of methanol < Me2SO < glycerol in morula and half-epiboly stages, and methanol < glycerol < Me2SO in the heartbeat stage. The results show morulae are partially protected against chilling in Me2SO and sucrose, half-epiboly in Me2SO, sucrose and methanol, and heartbeat-stage in methanol and glycerol. The results further suggest that carp embryos are sensitive to chilling and that toxicity and protective effects against chilling of cryoprotectants are stage-dependent. The finding on the low chilling sensitivity of heartbeat-stage embryos and the protective effect of certain cryoprotectants may be useful in designing cryopreservation protocols.