A novel human cell line was established from a primary botryoid rhabdomyosarcoma. Reverse transcription polymerase chain reaction investigations of this cell line, called RUCH-2, demonstrated expression of the regulatory factors PAX3, Myf3 and Myf5. After 3.5 months in culture, cells underwent a crisis after which Myf3 and Myf5 could no longer be detected, whereas PAX3 expression remained constant over the entire period. Karyotype analysis revealed breakpoints in regions similar to previously described alterations in primary rhabdomyosarcoma tumour samples. Interestingly, cells progressed to a metastatic phenotype, as observed by enhanced invasiveness in vitro and tumour growth in nude mice in vivo. On the molecular level, microarray analysis before and after progression identified extensive changes in the composition of the extracellular matrix. As expected, down-regulation of tissue inhibitors of metalloproteinases and up-regulation of matrix metalloproteinases were observed. Extensive down-regulation of several death receptors of the tumour necrosis factor family suggests that these cells might have an altered response to appropriate apoptotic stimuli. The RUCH-2 cell line represents a cellular model to study multistep tumorigenesis in human rhabdomyosarcoma, allowing molecular comparison of tumorigenic versus metastatic cancer cells.