The CC chemokine receptor-1 (CCR1) is a prime therapeutic target for treating autoimmune diseases. Through high capacity screening followed by chemical optimization, we identified a novel non-peptide CCR1 antagonist, R-N-[5-chloro-2-[2-[4-[(4-fluorophenyl)methyl]-2-methyl-1-piperazinyl ]-2-oxoethoxy]phenyl]urea hydrochloric acid salt (BX 471). Competition binding studies revealed that BX 471 was able to displace the CCR1 ligands macrophage inflammatory protein-1alpha (MIP-1alpha), RANTES, and monocyte chemotactic protein-3 (MCP-3) with high affinity (K(i) ranged from 1 nm to 5.5 nm). BX 471 was a potent functional antagonist based on its ability to inhibit a number of CCR1-mediated effects including Ca(2+) mobilization, increase in extracellular acidification rate, CD11b expression, and leukocyte migration. BX 471 demonstrated a greater than 10,000-fold selectivity for CCR1 compared with 28 G-protein-coupled receptors. Pharmacokinetic studies demonstrated that BX 471 was orally active with a bioavailability of 60% in dogs. Furthermore, BX 471 effectively reduces disease in a rat experimental allergic encephalomyelitis model of multiple sclerosis. This study is the first to demonstrate that a non-peptide chemokine receptor antagonist is efficacious in an animal model of an autoimmune disease. In summary, we have identified a potent, selective, and orally available CCR1 antagonist that may be useful in the treatment of chronic inflammatory diseases.