VO(2) kinetics reveal a central limitation at the onset of subthreshold exercise in heart transplant recipients

J Appl Physiol (1985). 2000 Apr;88(4):1228-38. doi: 10.1152/jappl.2000.88.4.1228.

Abstract

Because the cardiocirculatory response of heart transplant recipients (HTR) to exercise is delayed, we hypothesized that their O(2) uptake (VO(2)) kinetics at the onset of subthreshold exercise are slowed because of an impaired early "cardiodynamic" phase 1, rather than an abnormal subsequent "metabolic" phase 2. Thus we compared the VO(2) kinetics in 10 HTR submitted to six identical 10-min square-wave exercises set at 75% (36 +/- 5 W) of the load at their ventilatory threshold (VT) to those of 10 controls (C) similarly exercising at the same absolute (40 W; C40W group) and relative load (67 +/- 14 W; C67W group). Time-averaged heart rate, breath-by-breath VO(2), and O(2) pulse (O(2)p) data yielded monoexponential time constants of the VO(2) (s) and O(2)p increase. Separating phase 1 and 2 data permitted assessment of the phase 1 duration and phase 2 VO(2) time constant (). The VO(2) time constant was higher in HTR (38.4 +/- 7.5) than in C40W (22.9 +/- 9.6; P < or = 0. 002) or C67W (30.8 +/- 8.2; P < or = 0.05), as was the O(2)p time constant, resulting from a lower phase 1 VO(2) increase (287 +/- 59 vs. 349 +/- 66 ml/min; P < or = 0.05), O(2)p increase (2.8 +/- 0.6 vs. 3.6 +/- 1.0 ml/beat; P < or = 0.0001), and a longer phase 1 duration (36.7 +/- 12.3 vs. 26.8 +/- 6.0 s; P < or = 0.05), whereas the was similar in HTR and C (31.4 +/- 9.6 vs. 29.9 +/- 5.6 s; P = 0.85). Thus the HTR have slower subthreshold VO(2) kinetics due to an abnormal phase 1, suggesting that the heart is unable to increase its output abruptly when exercise begins. We expected a faster in HTR because of their prolonged phase 1 duration. Because this was not the case, their muscular metabolism may also be impaired at the onset of subthreshold exercise.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Exercise / physiology*
  • Exercise Test
  • Heart Rate
  • Heart Transplantation / physiology*
  • Heart Transplantation / rehabilitation
  • Humans
  • Male
  • Oxygen Consumption*
  • Physical Exertion / physiology
  • Reference Values
  • Respiration