Background: The aims of this study were (1) to realign cellular preparations when spots and structures are excited by different lasers of a confocal laser scanning microscope (multilaser studies); (2) to avoid the use of realigment methods by selecting fluorochromes that can be excited by only one laser (single-laser experiments).
Methods: In multilaser studies, we used propidium iodide fluorescent beads, as well as tetramethyl rhodamine isothiocyanate (TRITC), fluorescein isothiocyanate (FITC), and 4'-6 diamidino-2-phenylindole (DAPI)-stained human cancer lines. They were excited using HeNe, argon, and ultraviolet (UV) argon laser lines of a confocal laser scanning microscope. Single-laser experiments using UV excitation only were performed using europium as a model for magnetic resonance paramagnetic contrast agents. Nuclei of human cancer lines and tissue were counterstained by DAPI and cytoplasms were labeled with ELF-97 substrates. Factor analysis of medical images (FAMIS) and correlation methods were used to realign shifted images, focus images, and characterize each fluorochrome when necessary.
Results: In multilaser studies, superimposition of factor images corrected Z shifts and correlation methods provided X, Y correction values. In single-laser experiments, each fluorochrome was clearly distinguished in the group of fluorochromes. Estimated images in both studies showed colocalizations of structures.
Conclusions: It is possible to characterize differences in the focus and alignment of fluorescent probes and to correct them. It is also possible to study colocalization of UV excitable fluorochromes (DAPI, ELF-97, europium) in cellular and tissular preparations via multilaser or single-laser experiments.
Copyright 2000 Wiley-Liss, Inc.