Postsynaptic metabotropic glutamate (mGlu) receptor-activated inward current mediated by Na(+)-Ca(2+) exchange was compared in basolateral amygdala (BLA) neurons from brain slices of control (naïve and sham-operated) and amygdala-kindled rats. In control neurons, the mGlu agonist, quisqualate (QUIS; 1-100 microM), evoked an inward current not associated with a significant change in membrane slope conductance, measured from current-voltage relationships between -110 and -60 mV, consistent with activation of the Na(+)-Ca(2+) exchanger. Application of the group I selective mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine [(S)-DHPG; 10-1000 microM] or the endogenous agonist, glutamate (10-1000 microM), elicited the exchange current. QUIS was more potent than either (S)-DHPG or glutamate (apparent EC(50) = 19 microM, 57 microM, and 0.6 mM, respectively) in activating the Na(+)-Ca(2+) exchange current. The selective mGlu5 agonist, (R, S)-2-chloro-5-hydroxyphenylglycine [(R,S)-CHPG; apparent EC(50) = 2. 6 mM] also induced the exchange current. The maximum response to (R, S)-DHPG was about half of that of the other agonists suggesting partial agonist action. Concentration-response relationships of agonist-evoked inward currents were compared in control neurons and in neurons from kindled animals. The maximum value for the concentration-response relationship of the partial agonist (S)-DHPG- (but not the full agonist- [QUIS or (R,S)-CHPG]) induced inward current was shifted upward suggesting enhanced efficacy of this agonist in kindled neurons. Altogether, these data are consistent with a kindling-induced up-regulation of a group I mGlu-, possibly mGlu5-, mediated responses coupled to Na(+)-Ca(2+) exchange in BLA neurons.