Fractalkine is an endothelial cell-derived CX3C chemokine that is chemotactic mainly to mononuclear cells. Fractalkine was induced in rat aortic endothelial cells (RAEC) by interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), and lipopolysaccharide (LPS) transcriptionally and translationally. This induction correlated with increased NF-kappaB DNA binding activity as determined by gel mobility shift assay. Supershift assays revealed that the NF-kappaB subunits p50 and p65 were responsible for kappaB binding. Accordingly, we examined the role of NF-kappaB in fractalkine induction in RAEC through the use of an adenovirus-mediated mutant IkappaB as a specific inhibitor. Delivery of a dominant-negative form of IkappaBalpha in RAEC dramatically reduced the induction of fractalkine by these stimuli, suggesting a role for NF-kappaB activation in fractalkine induction. The inhibition of fractalkine expression by two potent NF-kappaB inhibitors, sulfasalazine and sanguinarine, further supported the central role of NF-kappaB in fractalkine transcription regulation and suggested a novel therapeutic target aimed at modulating leukocyte endothelial cell interaction.