A commercially available computational fluid dynamic (CFD) software program, specific for HVAC systems, was used to study the performance of an aerodynamic fume cupboard. The numerical results showed good qualitative agreement with physical measurements giving confidence in the CFD model to simulate and predict overall fume cupboard performance. However, there were some quantitative differences specifically around 'aerodynamic' features that could not be accurately simulated by the software code. The CFD model was clearly able to demonstrate differences in performance between good and bad cupboard designs, and show the importance of using rear baffles and lipfoils. It also showed the importance of good design features when a 'worker' was standing against the front edge or when there were draughts in front of the aperture. The computer model was used to simulate the gas tracer containment test method described in BS 7258 (1994) [Laboratory Fume Cupboards], and had a much greater sensitivity than the recommended physical measuring instruments. The results given in this paper demonstrate the potential for using a commercially available software package for the optimisation of fume cupboard design and testing. It also indicates the economy of using CFD compared with building a prototype and testing a model.