Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): A potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and CNS penetration in the rat

J Med Chem. 2000 May 4;43(9):1878-85. doi: 10.1021/jm000090i.

Abstract

A selective dopamine D(3) receptor antagonist offers the potential for an effective antipsychotic therapy, free of the serious side effects of currently available drugs. Using clearance and brain penetration studies as a screen, a series of 1,2,3, 4-tetrahydroisoquinolines, exemplified by 13, was identified with high D(3) affinity and selectivity against the D(2) receptor. Following examination of molecular models, the flexible butyl linker present in 13 was replaced by a more conformationally constrained cyclohexylethyl linker, leading to compounds with improved oral bioavailability and selectivity over other receptors. Subsequent optimization of this new series to improve the cytochrome P450 inhibitory profile and CNS penetration gave trans-N-[4-[2-(6-cyano-1, 2,3, 4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarbo xamide (24, SB-277011). This compound is a potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and brain penetration in the rat and represents an excellent new chemical tool for the investigation of the role of the dopamine D(3) receptor in the CNS.

MeSH terms

  • Animals
  • Biological Availability
  • Brain / drug effects
  • Brain / metabolism
  • CHO Cells
  • Catalepsy / chemically induced
  • Catalepsy / psychology
  • Central Nervous System / drug effects
  • Central Nervous System / metabolism*
  • Cricetinae
  • Dopamine Antagonists / chemical synthesis*
  • Dopamine Antagonists / pharmacokinetics
  • Dopamine Antagonists / pharmacology
  • Half-Life
  • Humans
  • Male
  • Microdialysis
  • Nitriles / chemical synthesis*
  • Nitriles / pharmacokinetics
  • Nitriles / pharmacology
  • Prolactin / blood
  • Quinolines / chemical synthesis*
  • Quinolines / pharmacokinetics
  • Quinolines / pharmacology
  • Radioligand Assay
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Dopamine D2 / drug effects*
  • Receptors, Dopamine D3
  • Tetrahydroisoquinolines*

Substances

  • DRD3 protein, human
  • Dopamine Antagonists
  • Drd3 protein, rat
  • Nitriles
  • Quinolines
  • Receptors, Dopamine D2
  • Receptors, Dopamine D3
  • SB 277011
  • Tetrahydroisoquinolines
  • Prolactin