Rescue of lesioned adult rat spinal motoneurons by adenoviral gene transfer of glial cell line-derived neurotrophic factor

J Neurosci Res. 2000 May 15;60(4):511-9. doi: 10.1002/(SICI)1097-4547(20000515)60:4<511::AID-JNR10>3.0.CO;2-I.

Abstract

Glial cell line-derived neurotrophic factor (GDNF) has been shown to protect cranial and spinal motoneurons, that suggests potential uses of GDNF in the treatment of spinal cord injury and motor neuron diseases. We examined neuroprotective effect of human GDNF encoded by an adenovirus vector (AxCAhGDNF) on the death of lesioned adult rat spinal motoneurons. The seventh cervical segment (C7) ventral and dorsal roots and dorsal root ganglia of adult Fisher 344 rats were avulsed, and AxCAhGDNF, AxCALacZ (adenovirus encoding beta-galactosidase gene) or PBS was inoculated in C7 vertebral foramen. One week after the avulsion and treatment with AxCALacZ, the animals showed expression of beta-galactosidase activity in lesioned spinal motoneurons. Animals avulsed and treated with AxCAhGDNF showed intense immunolabeling for GDNF in lesioned spinal motoneurons and expression of virus-induced human GDNF mRNA transcripts in the lesioned spinal cord tissue. Nissl-stained cell counts revealed that the treatment with AxCAhGDNF significantly prevented the loss of lesioned ventral horn motoneurons 2 to 8 weeks after avulsion, as compared to AxCALacZ or PBS treatment. Furthermore, the AxCAhGDNF treatment ameliorated choline acetyltransferase immunoreactivity in the lesioned motoneurons after avulsion. These results indicate that the adenovirus-mediated gene transfer of GDNF may prevent the degeneration of motoneurons in adult humans with spinal cord injury and motor neuron diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics*
  • Animals
  • COS Cells
  • Cell Survival / drug effects
  • Cells, Cultured
  • Choline O-Acetyltransferase / metabolism
  • Gene Transfer Techniques*
  • Genes, Reporter
  • Genetic Vectors / genetics
  • Genetic Vectors / pharmacology
  • Genetic Vectors / therapeutic use*
  • Glial Cell Line-Derived Neurotrophic Factor
  • Humans
  • Male
  • Mesencephalon / cytology
  • Mesencephalon / drug effects
  • Mesencephalon / metabolism
  • Motor Neurons / cytology
  • Motor Neurons / drug effects*
  • Motor Neurons / enzymology
  • Nerve Growth Factors*
  • Nerve Tissue Proteins / genetics*
  • Nerve Tissue Proteins / metabolism
  • Nerve Tissue Proteins / pharmacology
  • Neuroprotective Agents / metabolism
  • Neuroprotective Agents / pharmacology
  • Neuroprotective Agents / therapeutic use*
  • Radiculopathy / therapy*
  • Rats
  • Rats, Inbred F344
  • Reverse Transcriptase Polymerase Chain Reaction
  • Spinal Cord / cytology
  • Spinal Cord / drug effects
  • Spinal Cord / metabolism
  • Spinal Nerve Roots / injuries*
  • Spinal Nerve Roots / physiology
  • Spinal Nerve Roots / surgery
  • Transfection

Substances

  • GDNF protein, human
  • Gdnf protein, rat
  • Glial Cell Line-Derived Neurotrophic Factor
  • Nerve Growth Factors
  • Nerve Tissue Proteins
  • Neuroprotective Agents
  • Choline O-Acetyltransferase