Non-erythroid genes inserted on either side of human HS-40 impair the activation of its natural alpha -globin gene targets without being themselves preferentially activated

J Biol Chem. 2000 Aug 18;275(33):25831-9. doi: 10.1074/jbc.M001757200.

Abstract

The human alpha-globin gene complex includes three functional globin genes (5'-zeta2-alpha2-alpha1-3') regulated by a common positive regulatory element named HS-40 displaying strong erythroid-specific enhancer activity. How this enhancer activity can be shared between different promoters present at different positions in the same complex is poorly understood. To address this question, we used homologous recombination to target the insertion of marker genes driven by cytomegalovirus or long terminal repeat promoters in both possible orientations either upstream or downstream from the HS-40 region into the single human alpha-globin gene locus present in hybrid mouse erythroleukemia cells. We also used CRE recombinase-mediated cassette exchange to target the insertion of a tagged alpha-globin gene at the same position downstream from HS-40. All these insertions led to a similar decrease in the HS-40-dependent transcription of downstream human alpha-globin genes in differentiated cells. Interestingly, this decrease is associated with the strong activation of the proximal newly inserted alpha-globin gene, whereas in marked contrast, the transcription of the non-erythroid marker genes remains insensitive to HS-40. Taken together, these results indicate that the enhancer activity of HS-40 can be trapped by non-erythroid promoters in both upstream and downstream directions without necessarily leading to their own activation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Nucleus / metabolism
  • Chromosomes, Human, Pair 16
  • Cytomegalovirus / genetics
  • DNA Nucleotidyltransferases / metabolism
  • Enhancer Elements, Genetic*
  • Globins / genetics*
  • Globins / metabolism*
  • Humans
  • Mice
  • Models, Genetic
  • Mutagenesis, Insertional
  • Plasmids / metabolism
  • Promoter Regions, Genetic
  • Recombination, Genetic
  • Ribonucleases / metabolism
  • Terminal Repeat Sequences
  • Transcription, Genetic
  • Tumor Cells, Cultured

Substances

  • Globins
  • DNA Nucleotidyltransferases
  • FLP recombinase
  • Ribonucleases