Processing of the p105 precursor to form the active subunit p50 of the NF-kappaB transcription factor is a unique case in which the ubiquitin system is involved in limited processing rather than in complete destruction of the target substrate. A glycine-rich region along with a downstream acidic domain have been demonstrated to be essential for processing. Here we demonstrate that following IkappaB kinase (IkappaK)-mediated phosphorylation, the C-terminal domain of p105 (residues 918-934) serves as a recognition motif for the SCF(beta)(-TrCP) ubiquitin ligase. Expression of IkappaKbeta dramatically increases processing of wild-type p105, but not of p105-Delta918-934. Dominant-negative beta-TrCP inhibits IkappaK-dependent processing. Furthermore, the ligase and wild-type p105 but not p105-Delta918-934 associate physically following phosphorylation. In vitro, SCF(beta)(-TrCP) specifically conjugates and promotes processing of phosphorylated p105. Importantly, the TrCP recognition motif in p105 is different from that described for IkappaBs, beta-catenin and human immunodeficiency virus type 1 Vpu. Since p105-Delta918-934 is also conjugated and processed, it appears that p105 can be recognized under different physiological conditions by two different ligases, targeting two distinct recognition motifs.