Background: Currently, prostate cancer (CaP) cytogenetics is not well defined, largely because of technical difficulties in obtaining primary tumor metaphases.
Methods and results: We examined three CaP cell lines (LNCaP, DU145, PC-3) using sequential Giemsa banding and spectral karyotyping (SKY) to search for a common structural aberration or translocation breakpoint. No consistent rearrangement common to all three cell lines was detected. A clustering of centromeric translocation breakpoints was detected in chromosomes 4, 5, 6, 8, 11, 12, 14, and 15 in DU145 and PC-3. Both these lines were found to have karyotypes with a greater level of complexity than LNCaP.
Conclusion: The large number of structural aberrations present in DU145 and PC-3 implicate an underlying chromosomal instability and subsequent accumulation of cytogenetic alterations that confer a selective growth advantage. The high frequency of centromeric rearrangements in these lines indicates a potential role for mitotic irregularities associated with the centromere in CaP tumorigenesis.