The transcription factor AP-1 represents a central key element in the expression of human pathogenic papillomaviruses (HPV). We here propose a novel role for AP-1 as an essential component of an intracellular surveillance mechanism negatively controlling the proliferation of HPV-positive cells under in vivo conditions. The dissection of AP-1 composition in cervical-carcinoma cells revealed an inverse relationship between the Fos-related antigen Fra-1 and the tumorigenic phenotype. Cervical-carcinoma cell lines were either negative or expressed only low amounts of Fra-1 (jointly with c-Fos) within their AP-1 complexes. Somatic-cell hybridization technique was used to fuse different HPV-positive malignant cell lines. This resulted either in tumorigenic hybrids or in cells in which the malignant phenotype of the parental fusion partners was completely suppressed. The monitoring of AP-1 composition in electrophoretic mobility super-shift assays showed that the amount of Fra-1 was substantially increased within the AP-1 complex of non-malignant cells. In contrast, Fra-1 was even diminished in malignant hybrids, while c-Fos remained expressed. This correlation suggests that the concentration of Fra-1 within the AP-1 transcription complex might be an important marker for predicting the in vivo growth properties of HPV-positive cells.
Copyright 2000 Wiley-Liss, Inc.