In different bacterial species, ccmIEFH genes have been suggested to code for subunits of a bacterial haem-lyase catalyzing the covalent attachment of haem to c-type apoproteins. In Rhizobium etli CE3 there are two copies of ccmIEFH: one in the chromosome and the other located in plasmid pf. However, the null phenotype of chromosomal ccmF mutant indicates that the gene locus of plasmid pf is not functional. Two ccmI chromosomal mutants, previously isolated, produced detectable levels of c-type cytochromes under certain culture conditions in contrast with the ccmF mutant, suggesting that ccmF could be transcribed independently. The transcriptional organization of ccmIEFH operon was established. Two promoters from the chromosomal locus were mapped by primer extension, one located upstream of ccmI and the second located upstream of ccmF. The regulation of the expression of both promoters was studied using appropriate lacZ gene fusions (ccmI-lacZ and ccmEF-lacZ). The ccmI-lacZ gene fusion was expressed in complex medium, during exponential growth, under microaerobic conditions and in a R. etli mutant that accumulates reducing power, conditions where a higher respiration rate could be limited by c-type cytochrome content. The ccmEF-lacZ fusion was also primarily expressed in complex medium and under microaerophilic conditions. The finding of two independent promoters in this gene locus could suggest that the step catalyzed by CcmFH could be a rate-limiting step for c-type cytochrome assembly under certain culture conditions.