Chlorocatechol detection based on a clc operon/reporter gene system

Anal Chem. 2000 Jun 1;72(11):2423-7. doi: 10.1021/ac9913917.

Abstract

A sensitive and selective sensing system for chlorocatechols (3-chlorocatechol and 4-chlorocatechol) was developed based on Pseudomonas putida bacteria harboring the plasmid pSMM50R-B'. In this plasmid, the regulatory protein of the clc operon, ClcR, controls the expression of the reporter enzyme beta-galactosidase. When bacteria containing components of the clc operon are grown in the presence of chlorocatechols, ClcR activates the clcA promoter, which is located upstream from the beta-galactosidase gene. Thus, the concentration of chlorocatechols can be related to the production of beta-galactosidase in the bacteria. The concentration of beta-galactosidase expressed in the bacteria was determined by measuring the chemiluminescence signal emitted with the use of a 1,2-dioxetane substrate. ClcR has a high specificity for chlorocatechols and provides the sensing system with high selectivity. This was demonstrated by evaluating several structurally related organic compounds as potential interfering agents. Both 3-chlorocatechol and 4-chlorocatechol can be detected with this sensing system at concentrations as low as 8 x 10(-10) and 2 x 10(-9) M, respectively, using a 2-h induction period. In the case of 3-chlorocatechol, a highly selective sensing system was developed that can detect this species at concentrations as low as 6 x 10(-8) M after a 5-min induction period; the presence of 4-chlorocatechol at concentrations as high as 2 x 10(-4) M did not interfere with this system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Arabidopsis Proteins*
  • Catechols / analysis*
  • Chloride Channels / genetics*
  • Genes, Reporter*
  • Lac Operon
  • Luminescent Measurements
  • Operon
  • Plant Proteins*
  • Pseudomonas putida / chemistry
  • Pseudomonas putida / genetics*
  • beta-Galactosidase / genetics
  • beta-Galactosidase / metabolism

Substances

  • ATCLC-A protein, Arabidopsis
  • Arabidopsis Proteins
  • Catechols
  • Chloride Channels
  • Plant Proteins
  • 3-chlorocatechol
  • beta-Galactosidase
  • 4-chlorocatechol