Quantitation of carcinogen-DNA adducts provides an estimate of the biologically effective dose of a chemical carcinogen reaching the target tissue. In order to improve exposure-assessment and cancer risk estimates, we are developing an ultrasensitive procedure for the detection of carcinogen-DNA adducts. The method is based upon postlabeling of carcinogen-DNA adducts by acetylation with 14C-acetic anhydride combined with quantitation of 14C by accelerator mass spectrometry (AMS). For this purpose, adducts of benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (BPDE) with DNA and deoxyguanosine (dG) were synthesized. The most promutagenic adduct of BPDE, 7R,8S,9R-trihydroxy-10S-(N(2)-deoxyguanosyl)-7,8,9, 10-tetrahydrobenzo[a]pyrene (BPdG), was HPLC purified and structurally characterized. Postlabeling of the BPdG adduct with acetic anhydride yielded a major product with a greater than 60% yield. The postlabeled adduct was identified by liquid chromatography-mass spectrometry as pentakis(acetyl) BPdG (AcBPdG). Postlabeling of the BPdG adduct with 14C-acetic anhydride yielded a major product coeluting with an AcBPdG standard. Quantitation of the 14C-postlabeled adduct by AMS promises to allow detection of attomolar amounts of adducts. The method is now being optimized and validated for use in human samples.