Purpose: Nonlinear EEG analysis is valuable in characterizing the spatiotemporal dynamics of the epileptogenic process in mesial temporal lobe epilepsy. We examined the ability of the measure neuronal complexity loss (L*) to characterize the primary epileptogenic area of neocortical lesional epilepsies during the interictal state.
Methods: Spatial distribution of L* (L* map) was extracted from electrocorticograms (n = 52) recorded during presurgical assessment via subdural 64-contact grid electrodes covering lesions in either frontal, parietal, or temporal neocortex in 15 patients. The exact location of recording contacts on the brain surface was identified by matching a postimplant lateral x-ray of the skull with a postoperatively obtained sagittal MRI scan. Reprojecting L* maps onto the subject's brain surface allowed us to compare the spatial distribution of L* with the resection range of the extended lesionectomy.
Results: In each of the six patients who became seizure-free, maximum values of L* were restricted to recording sites coinciding with the area of resection. In contrast, L* maps of most patients who had no benefit from the resection indicated a more widespread extent or the existence of additional, probably autonomous, foci. The mean of L* values obtained from recording sites outside the area of resection correctly distinguished 13 patients (86.7 %) with respect to seizure outcome.
Conclusions: Relevant information obtained from long-lasting interictal electrocorticographic recordings can be compressed to a single L* map that contributes to a spatial characterization of the primary epileptogenic area. In neocortical lesional epilepsies, L* allows for identification and characterization of epileptogenic activity and thus provides an additional diagnostic tool for presurgical assessment.