The beta2 integrins are known to be important in the motile function of leukocytes in general and in the adhesive response to inflammatory stimuli in particular. In the current study, under direct microscopic observation with concomitant time-lapse video recording, we examined the locomotion of human blood PMN from a patient with Leukocyte Adhesion Deficiency-1 (LAD), a disorder in which beta2 integrins on the cell surface are markedly deficient in number or function. In thin slide preparations such that the leukocytes were somewhat compressed between slide and cover slip, PMNLAD exhibited normal random locomotion and chemotaxis, apparently by using the opposing surfaces to generate the force for locomotion (chimneying). In thicker preparations, an adherence deficit was evident, but chemotaxis still occurred, even by PMNLAD anticoagulated in EDTA. Consistent with the paucity of beta2 integrins on the surface of the PMNLAD was their failure to aggregate in the presence of antibodies to beta2 integrins, even when they had been brought together by chemotaxis. We relate these findings to the reported independence from integrins of PMN in the lung vasculature in LAD, as well as in certain experimental conditions.
Copyright 2000 Wiley-Liss, Inc.